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SUMMARY

A probabilistic design method is described and demonstrated using a smart composite wing. Probabilistic
structural design incorporates naturally occurring uncertainties including those in constituent (fiber/matrix) material

properties, fabrication variables, structure geometry and control-related parameters. Probabilistic sensitivity factors are

computed to identify those parameters that have a great influence on a specific structural reliability. Two performance
criteria are used to demonstrate this design methodology. The first criterion requires that the actuated angle at the wing

tip be bounded by upper and lower limits at a specified reliability. The second criterion requires that the probability of

ply damage due to random impact load be smaller than an assigned value. When the relationship between reliability

improvement and the sensitivity factors is assessed, the results show that a reduction in the scatter of the random variable
with the largest sensitivity factor (absolute value) provides the lowest failure probability. An increase in the mean of the

random variable with a negative sensitivity factor will reduce the failure probability. Therefore, the design can be im-

proved by controlling or selecting distribution parameters associated with random variables. This can be implemented

during the manufacturing process to obtain maximum benefit with minimum alterations.

INTRODUCTION

Aerospace structures are complex assemblages of structural components that operate under severe and often
uncertain service environments. These structures require durability, high reliability, light weight, high performance, and

affordable cost. In order to meet these requirements, composite materials are attractive potential candidates. Composite

materials possess outstanding mechanical properties which are derived from a wide variety of variables such as con-
stituent material properties and laminate characteristics, which in turn are influenced by fiber and void volume ratios, ply

orientation, and ply thickness. These variables are known to be uncertain in nature.
In order to further enhance structural performances to meet new challenges, other advanced concepts should be

investigated. Recent developments in smart structure concepts that use actuation materials, such as piezoelectric

ceramics, show great potential to enhance structural performance as well as durability and reliability (refs. 1 and 2).

Figure 1 depicts a conceptual diagram of a smart composite wing system. The essential parts of a smart composite
structure include: (1) a composite structure, (2) strategically located sensors, (3) signal processors, which process the

signals generated by the sensors, (4) dedicated computers with suitable hardware and software which continuously check
the structural response magnitudes and compare them to predetermined acceptable "red line" values and provide desired

corrections to the controller, (5) a controller which signals the actuators to implement the desired corrections, and

(6) actuators.



Thecontroldevices in smart structures consist of: (1) a polarized material, (2) an electric field parallel to the

direction of polarization, and (3) the expansion-contraction effects of the polarized material. When a control voltage is

applied, the actuation material expands or contracts so that the structural behavior is altered by a desired amount and its

reliability is affected. Present piezoelectric technology has been successfully applied to small-scale and low-stress struc-

tures (ref. 3). However, there are inevitable difficulties when cun'ent technology is applied to large-scale and high-stress

composite structures. Those adversities can be alleviated if (1) special fibers such as piezoelectric fibers, and (2) fast

actuation capability, are combined with regular high-strength high-modulus fiber to form the smart intraply hybrid

composites (re£ 4). This combination can be readily integrated into a smart composite structure by using combinations

of intraply and interply hybrid composites to insure that the smart composite structures will operate in the design-

specified range.

The adaptation of the intraply hybrid composite concept (refs. 4 and 5) to smart composite structures is depicted
schematically in figure 2. In figure 2(a), the intraply hybrid configuration is shown, while in figure 2(b), its adaptation to

smart composite structures is shown. In figure 2, the smart composite consists of (1) regular plies which are made of

traditional composite materials and (2) control plies which are composed of strips of traditional composite materials

interspersed with strips of mixed traditional and actuation materials. Actuators, made of actuation materials such as

piezoelectric ceramics or fibers, are used to control the behavior of the composite structure by expanding or contracting

the actuation strips to achieve the requisite design and operational goals. Because of the similarity between the thermal
strain and the strain in the actuation materials, the actuation strains are simulated using thermal strains computed from a

temperature field (representing the electric field strength) and thermal expansion coefficients (representing the actuation

strain coefficients). However, the strains induced by the actuator are also affected by uncertainties in several factors that

must be quantified probabilistically. These include: (1) inaccurate measurements made by the sensors, (2) deviation
from intended electric field, (3) uncertain relationship between actuation strain and electric field strength, (4) uncertain

material properties for the actuation materials, (5) uncertain electric field strength, and (6) improper location of the sen-
sor/control materials. Because of these factors, the use of control devices increases the uncertainty in an already

uncertain composite structural behavior.
In order to account for the various uncertainties and to satisfy design requirements, knockdown (safety) factors are

used extensively. These knockdown factors significantly reduce the design load of composite structures without a quanti-

fiable measure of their reliability. In this paper, an alternative approach, based on probabilistic methods, is described for

a comprehensive probabilistic design assessment of smart composite structures.
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cumulative distribution function

fiber modulus in longitudinal direction

fiber modulus in transverse direction

matrix elastic modulus

in-plane fiber shear modulus

out-of-plane fiber shear modulus

matrix shear modulus

mean value of l_ random variable

probability of failure

safety factor
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fiber compressive strength

fiber tensile strength

matrix compressive strength

matrix shear strength

matrix tensile strength

most probable point

design parameter

performance

red line (critical) value for the angle of attack

reliability index

standard deviation of t_ random variable

change of reliability index

in-plane fiber Poisson's ratio

out-of-plane fiber Poisson's ratio

matrix Poisson's ratio

CDF of a standardized normally distributed random variable

PROBABILISTIC DESIGN WITH IPACS COMPUTER CODE

The Computer Code IPACS (Integrated Probabilistic Assessment of Composite Structures) (ref. 6) has evolved
from extensive research activities at NASA Lewis Research Center to develop probabilistic structural analysis

methods (ref. 7) and computational composite mechanics (ref. 5). The composite micromechanics, macromechanics,

and laminate theory (including interply and intraply hybrids) are embodied in ICAN (ref. 5). IPACS consists of two
stand-alone computer modules: PICAN and NESSUS. PICAN is used to simulate probabilistic composite mechanics

(ref. 8). NESSUS uses the information from PICAN to simulate probabilistic structural responses (ref. 9). A block

diagram of IPACS is shown in figure 3. Direct coupling of these two modules makes it possible to simulate the ,--

uncertainties in all inherent scales of the composite--from constituent materials to the composite structure including

its boundary and loading conditions as well as environmental effects. Note that special algorithms (ref. 10) are used
instead of the conventional Monte Carlo simulation to achieve substantial computational efficiencies which are

acceptable for practical applications. Therefore, a probabilistic composite structural analysis, which cannot be done

traditionally, becomes feasible especially for composite structures which have a large number of variables.
A wealth of information is obtained with IPACS through a comprehensive probabilistic assessment of com-

posite structural analysis, which includes the cumulative distribution function of a response, reliability for a design
criterion, and the probabilistic sensitivity factors of the uncertain variables to a cumulative probability of a structural

response and structural reliability. The commonly used sensitivity in a deterministic analysis is the performance



sensitivity,aZIOX_,whichmeasuresthechangeintheperformanceZ due to the change in a design parameter X_. This

concept is extended to the probabilistic analysis to define the probabilistic sensitivity which measures the change in the

reliability relative to the change in each random variable. The failure probability for a given performance is defined as
(ref. 11)

Py = _(-_) (1)

where 13is the reliability index; • is the cumulative distribution function (CDF) of a standardized, normally

distributed, random variable. Probabilistie sensitivity factor (SFi) for t_ random variable is defined as

_P _ t/i*

SFi = aX, _J (2)

where u* is the most probable failure point of a limit state function in a unit of normal probability space (most probable

point). These factors provide quantifiable information on the sensitivity of the reliability to the uncertain variable.

The next step is to extract useful information from the output of the simulation and to check it against

probabilistic design criteria. If target reliability is not satisfied, redesign is guided by adjusting or controlling
parameters associated with the primitive variables which significantly influence the design reliability. For

example, the change in [3 (A_) caused by a change in the mean of random variable Xt (Ami) can be estimated by

equation (3) (ref. 11).

A[J ._ - SF, Am, (3)
o',

Similarly, the change in 13(AI3) caused by a change in the standard deviation of the i thrandom variable X_ (Aot)

can be estimated by equation (4).

SFi u_ (4)
AI3 =_ Ao i

O5

With this information, alterations can be made to improve the structural reliability, as will be demonstrated later.

DEMONSTRATION OF A SMART COMPOSITE WING

The probabilistic design of a smart composite structure will be demonstrated by evaluating a smart composite

wing. The optimum exact deformed shape of a wing is a function of the particular flight condition. With smart struc-

ture concepts, proper deformation change can be obtained from flight condition to flight condition. To achieve these

desirable geometries at required accuracy, the changes have to be inducible within an acceptable range. The feasibility

of achieving the desired range of uncertainties has been studied here in a simplified form of what a practical system
could be. Figure 4 illustrates the geometry and loads for a composite wing in this simplified system. The geometry of"

the internal structure of the composite wing is shown in figure 4(a). The wing is loaded with nonuniform pressure
which varies from root to tip and from leading edge to trailing edge as shown in figure 4(b).

The composite configurations for the skin, spars, and bulkheads are [q-45/0/90:/0/-r-45],, [08] and [08],

respectively. The 45 ° plies are selected to be control plies. In each control ply, both control (hybridizing actuation)

and traditional strips exist. However, in this paper, control strip is assigned throughout the control ply for computa-

tional simplicity. The control volume ratio is the percentage of control-related material (or control device) in a control

ply. The percentage of the actuation materials in a control-related material is denoted by actuation fiber (control)

volume ratio. The constituent materials properties for traditional plies, their assumed probabilistic distribution, and
coefficient of variation (representing range of the scatter) are summarized in table 1. The corresponding fabrication



variables used to make the smart composite wing are summarized in table 2. Those for the control are summarized in
table 3. Since actuation materials are more expensive than traditional materials, control volume ratio should be

determined such that total cost for a smart composite structure subjected to multidesign constraints is minimized.

General constraints include (I) those typical for traditional composite structural designs, and (2) those for actuation

materials due to their particular material characteristics such as strain, stress, applied voltage requirementS, etc. This

paper emphasizes the demonstration of the probabilistic design assessment of smart composite structuresby using

intraply hybrid composites with actuation materials. Optimization issues are not considered herein.
In this probabilistic study, we evaluate a change in the angle of attack due to control; investigate the relationship

between improvement of reliability and sensitivity factors; examine a proposed design concept by varying the

distribution parameters associated with a random variable (such as the mean and the standard deviation) and with their

respective sensitivity information. Also, similar to the examination of a proposed design concept, study ply damage in

the smart composite wing caused by random impact loads (represented by an equivalent static load for the analysis).

Change in Angle of Attack Caused by Control

The uncertainty in the change of the angle of attack caused by control with actuation material is evaluated as the

scatter from a reference position. The probability density function for the actuated change in the angle of attack at wing

tip is shown in figure 5(a). Figure 5Co) 'illustrates the sensitivity factors at 0.999 probability. Two performance criteria
are examined. The first criterion requires that the change in the angle of attack caused by control at wing tip be less

than - 1.3 ° (upper bound). The second criterion requires that the change in the angle of attack be greater than-l.9 °

(lower bound).
To fully understand the structural behavior, a parametric study is performed by varying the distribution para-

meters of random variables. The probability density function of the actuated angle for an increase in the mean of a

given random variable is shown in figure 6(a). The mean value of the actuated angle caused by a 5-percent increase in
the mean value of the control strain coefficient decreases most while scatter remains the same. The probability density

function of the actuated angle for a 40-percent reduction in the scatter of a given random variable is shown in fig-

ure 6(b). The mean response (a change in the angie of attack) remains the same. The scatter of the response is reduced

most with a 40-percent reduction in the scatter of the control strain coefficient. This observation is confirmed by the

sensitivity analysis, which finds that control strain coefficient has the largest sensitivity factor.
A study for reliability improvement by varying distribution parameters is conducted and discussed in the next

section of this paper. Selection from among possible arrangements for reliability improvement may depend on other

considerations such as the cost of changing the mean value and the cost of quality improvement, and these can be

readily incorporated in the assessment.

Upper bound for the change in the angle of attack due to controL--The failure probability for this perfor-

mance requirement is 0.0075 (reliability index _ = 2.430) with reference distribution parameters. For a 5-percent
increase in the mean or a 40-percent reduction in the scatter for each random variable, the change in the reliability

index 13,which is estimated by using sensitivity information, is shown in table 4. As indicated in the table, the control
strain coefficient has the largest (absolute) sensitivity factor (-0.785), followed by the fiber modulus and the matrix

modulus of the control ply (-0.319 and 0.220, respectively). Notice that the sens'_vity factor for the matrix modulus is

positive. This means that an increase in the mean of the matrix modulus will decrease the reliability (due to a reduction
in 13), as indicated in equation (3). The reliability index for each case, calculated with IPACS as shown in table 5, finds

that estimated and calculated 13agree very well. Therefore, a good estimation of 13for a new distribution parameter cozl
be calculated without running IPACS again. The results also show that a reduction in the scatter of a random variable

always increases the reliability index (a reduction in failure probability) as indicated in equation (4). Based on the
information in table 4, a designer can easily set up a strategy to improve the reliability without extensive analyses. In

this particular example, one should increase the mean of the control strain coefficient by 5-percent, followed by a
reduction in the scatter of the same variable by 40 percent, etc. This procedure should be continued until the target

reliability is met with a minimum of design alterations.
Lower bound for the change in the angle of attack due to controL--The failure probability for this perfor-

mance requirement is 0.0034 (reliability index 13= 2.70) with reference distribution parameters. As indicated in table

6, the control strain coefficient has the largest sensitivity factor (0.785), followed by the fiber modulus and the matrix
modulus of the control ply (0.319 and -0.220, respectively). Notice that the sign of the sensitivity factor is opposite to



those for upper bound. Therefore, an increase in the mean of the matrix modulus will increase the reliability. For a

5-percent increase in the mean or a 40-percent reduction in the scatter for each random variable, the change in the

reliability index _, which is estimated by using sensitivity information, is shown in table 6. The reliability index for
each case is also calculated with IPACS, as shown in table 7. Again, the estimated and calculated _ agree very well.

As shown before, a reduction in the scatter of a random variable always increases the reliability index. However, an

increase in the mean of random variables such as fiber volume ratio or control strain coefficient, which have positive

sensitivity factors, will result in a reduction in the reliability. To improve the reliability for this case, one should reduce
40 percent of the scatter of the control strain coefficient, and then increase the mean of the matrix modulus by 5 per-

cent, followed by a reduction in the scatter of the same variable by 40 percent.

Ply Damage Due to Random Impact Load

Assume that the wing is struck by a foreign object with the direction and location of the impact loads as shown

in figure 4(c). The impact load is represented by an equivalent load for a static analysis. Ply damage in the vicinity of

the impact is assessed. The modified distortion energy is used for combined stress failure criterion (ref. 5). The
probability density function of the safety margin (ref. 5) and the sensitivity factors at failure are shown in figure 7.

Actuation fiber volume ratio has the largest sensitivity factor (0.645) followed by matrix tensile strength (-0.5), impact

load (0.33), and matrix modulus (0.311). The sensitivity factors for both expansion and contraction electric field

strengths are small (0.060 and 0.083, respectively). A parametric study is conducted by varying the distribution

parameters. A 5-percent increase in the mean or a 40-percent reduction in the scatter for actuation fiber volume ratio,
matrix modulus and matrix tensile strength are first considered for their large sensitivity values. For random variables

with a small sensitivity factor, it can be seen from equation (4) that even with a 100-percent reduction in the scatter

(Ao = o), A_ is still negligible. However, if one cart increase the ratio between Am and o in equation (3), A[3 will be

sizable. Therefore, another assessment is performed for a 25-percent reduction in the mean of one of the electric field

strengths. The ratio between Am and o is equal to 5 which is much larger than the ratios in other cases. The estimated
[3 and _ calculated with IPACS are listed in tables 8 and 9 and show that estimated [3 agrees very well with calculated

[3. Reliability is improved by a reduction in the mean of the random variable with a negative sensitivity factor and vice
versa. Moreover, efficient and economic redesign can be achieved by enhancing the quality of the random variable

with a large (absolute) sensitivity factor. When the sensitivity factor of a random variable is small, quality of the

random variable is not crucial for reliability improvement. However, the change in the mean of this random variable

may have a significant effect on the reliability.

CONCLUSIONS

We have presented a formal methodology that can be used to probabilistically design smart composite structures

by using the IPACS (Integrated Probabilistic Assessment of Composite Structures) computer code. This methodology
integrates micro- and macro-composite mechanics, laminate theory, structural mechanics (finite element methods),

smart structure concepts, and probability algorithms to perform a probabilistic assessment of composite structural

design that accounts for uncertainties involved in the design process. Probabilistic sensitivity factors are key results

from the probabilistie assessment of composite structures using the computer code IPACS. These factors provide

quantifiable information about the relative sensitivity of design parameters on structural responses. We found from
study that the reduction in the scatter of the random variable with the highest sensitivity factor (absolute value)

provides the lowest failure probability. An increase in the mean of the random variables may result in reliability

reduction if the sensitivity factor is positive. When the sensitivity factor of a random variable is small, the quality of the

random variable is not crucial for reliability improvement. However, a change in the mean of this random variable may

have a significant effect on reliability. With this information, a smart composite structure can be redesigned efficiently

by controlling and/or adjusting the parameters associated with random variables during manufacturing to obtain
maximum benefit with a minimum number of alterations.
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TABLE L--STATISTICS OF HBER AND

MATRIX PROPERTIES FOR GRAPHITE-EPOXY COMPOSITE

Property

Fiber modulus da'cctior_ Mpsi

Longitudinaln_l
Transverse, E q2

Fiber shear modulus, Mpsi

In-plane, G#q2

Out-of-plane, G/23

Fiber Poisson's ratio

In-plane, v/l 2

Out-of-plane, v/23

Matrix

Elastic modulus, E_ Mpsi

Shear modulus, G_ Mpsi

Poisson's ratio, v_

Fiberstrength,kpsi

Tertsile, S_

Compressive, S/c

Matrix strength,kpsi

Tensile, Star

Compressive, Smc

Shear, Sm_

Typical distribution Typical Assumed

type mean coefficient of
variation

Normal

i

i

31.0

2.0

2.0

1.0

i 0.2
i

i 0.25

Lognormal

0.5

0.185

0.35

400.0

400.0

15.0

35.0

15.0

0.05

TABLE II.--STATISTICS OF FABRICATION VARIABLES

Property Unit Typical Typical

distribution _/]_e mean

Fiber volume ratio

Void volume ratio

Ply misalignment angle deg
Ply thickness (regular skin) in.

Ply thickness (stringer/flame) in.

Ply thickness (control ply) in.

aStandard deviation.

Normal

Assumed coefficient

of variation

0.60 0.05

.02 .05

.00 1.0 a

.015 0.05

.090 .02

.060 .025

TABLE III.--STATISTICS OF CONTROL RELATED VARIABLES

Property Unit Typical dstribution Typical Assumed coefficient

type mean of variation

Controlstraincoefficient in./V Normal 10"* 0.05

Electric field strength V/in. Normal l0 s 0.05



TABLE IV.--ESTIMATED [3 FOR UPPER BOUND CRITERION OF CHANGE
IN ANGLE OF ATTACK AND SENSITIVITY FACTORS WITH

MANUFACTURING-CONTROLLED RANDOM VARIABLES

Random variable being

controlled (actuation material)

Matrix modulus

Fiber modulus

Control strain coefficient

Sensitivity factor

0.220

-.319

- .785

"Pf=¢ (-[3).

5-percent increase
in mean

Ap" [3

-0.220 2.210

.319 2.749

.785 3.215

40-percent decrease
in scatter

A[3 [3

0.047 2.477

.099 2.529

.599 3.029

TABLE V.--CALCULATED [3 FOR UPPER BOUND CRITERION OF CHANGE
IN ANGLE OF ATTACK AND FAILURE PROBABILITY WITH

MANUFACTURING-CONTROLLED RANDOM VARIABLES

Random variable

being controlled

(actuation material)

Matrix modulus

Fiber modulus

Control strain coefficient

Odgmal
•p_=• (-_).

Sensitivity
factor

0.220

-.319

-.785

5-percent increase
in mean

[3" P?

2.343 0.0095

2.782 .0027

3.230 .0006

2.430 .0075

40-percent decrease
in scatter

2.469 0.0068

2.513 0.0060

3.125 0.0009

2.430 0.0075

TABLE VI.--ESTIMATED [3 FOR LOWER BOUND CRITERION OF CHANGE
IN ANGLE OF ATTACK AND SENSITIVITY FACTORS WITH

MANUFACTURING-CONTROLLED RANDOM VARIABLES

Random variable

being controlled

(actuation mat_wial)

Matrix modulus

Fiber modulus

Control strain coefficient

Sensitivity
factor

-0.220

.319

.785

"Pf=¢ (-[3).

5-percent increase
in mean

A[3"

0.220 2.920

-.319 2.381

-.785 1.915

40-percent decrease
in scatter

_[3 [3

0.054 2.754

.I10 2.$10

.667 3.367

TABLE VII.---CALCULATED [3 FOR LOWER BOUND CRITERION OF CHANGE
IN ANGLE OF ATTACK AND FAILURE PROBABILITY WITH

MANUFACTURING-CONTROLLED RANDOM VARIABLES

Random variable being

controlled (actuation material)

Matrix modulus

Fiber modulus

Conlrol strain coefficient

odg_a

Sensitivity
factor

-0.220

.319

.785

•py=¢ (-[3).

5-percent increase
in mean

[3" p/

2.808 0.0025

2.315 .0103

1.820 .0344

2.700 .0034

40-percent decrease
in scatter

2.744 0.0030

2.791 .0026

3.472 .0003

2.700 .0034



TABLE VIII.--ESTIMATED [3 USING SENSITIVITY FACTORS FOR PLY DAMAGE DUE

TO IMPACT LOADS WITH MANUFACTURING-CONTROLLED RANDOM VARIABLES

Random variable being

controlled (actuation material)

Actuation fiber (contzol) volume ratio

Matrix modulus

Matrix tensile strength

Electric field strength (expansion)

Electric field strens_h (contraction)

g_Df = _ (_ [_).= _ •

b25opercentreduction in the mean.

Sensitivity
factor

5-percent increase
in mean

A_= [3

0.645

.334

-.500

.060

.083

-0.645 2.273

-.334 2.584

.500 3.418

.300 b 3.218 b

.415 b 3.333 b

40_centdecrease
in scattcr

A[3 p

0.486 3.404

.130 3.048

.301 3.219

TABLE D,L---CAI.,CULATED [3 OF PLY DAMAGE ASSESSMENT DUE TO RANDOM IMPACT LOADS
AND FAILURE PROBABILITY WITH MANUFACTURING-CONTROLLED RANDOM VARIABLES

Random variable being

controlled (actuation material)

Actuation fiber

(control) volume ratio
Matrix modulus

Matrix tensile sVength

Electric field strength (expansion)

Electric field strength (contraction)

OnginaJ

Sensitivity

factor

0.645

.334

-.500

.060

.083

b;_-pOcr(_)reduction in the mean.

5-percent increase
in mean

2.106

2.435

3.616
3.395 b

3.666 b

2.918

40-percent decrease
in scatter

0.0180 3.375

.0074 3.025

.0001 3.173

.0003b ....

.0001b ....

.0018 2.918

0.0004

.0012

.0007

.0018

I0
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Figure 1 .--Conceptual diagram of smart composite aircraft wing system.
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Figure 2.--Adaptation of intraply hybrid to smart composite system. (a) Intraply hybrid composite system.
(b) Structural control using sensor/control materials.
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Figure 3.---Concept of integrated probabilistic assessment of composite structures (IPACS).

12



6if/

2
/

-_A

Leading edge r_B
/

t
____1 L __

l- I I
.... L_---- 1. _- --

I l I

Trailing edge L_ B

,_ 18ff

L 4ft _I

• • .lff

_1.5 ft_

(a) Section A-A

Section B-B

(b)

+ + +# _ +++ ++

3.6 psi _"_._._._..__

Section A-A Section B-B

Impact zone (Leading edge)

Impact

_Y (Trailing edge) l z load
x y

x z (Bottom view)
(c)

Figure 4.---Geometry and loads for a composite wing. (a) Geometry of a composite wing. (b) Variation of
pressure on a composite wing. (c) Location and direction of random impact loads.

13



6

8

n

0
-2.0

m

(a) I I
-1.8 -1.6 -1.4 -1.2

Actuated change in angle of attack at tip, degree

Control strain coefficient

mg Fiber modulus

Matrix modulus

Electric field strength (expansion)

Electric field strength (contraction)

(b)
0.0 ...........................

Figure 5._Probability density function factors at 0.999
probability. (a) Actuated change in angle of attack.
(b) Sensitivity.

14



f-
O

°w

O
C

_/)

_2
"O

°_
JO
t_
.Q

2
0-

4 I

Failure

zone

--2.0

Lower bound Upper bound

/ , _X / ",_ _ _ Failure

// ////," ///_ "_ X\\\\\\ zone

-1.8 -1.6 -1.4 -1.2

Actuated change in the angle of attack at tip, degree

6

_-4 --
O°m

¢.)
e-

u)

-O

°_
.Q

.Q

2
0.2

(b)
0
-2.0

Lower bound

Failure

zone

Variable

Matrix modulus

Original ........ Fiber modulus
Control strain

coefficient

/ \

lli k,\
i,l N '

-1.8 -1.6 -1.4

Actuated change in the angle of attack at tip, degree

Sensitivity factor with reference

distribution parameters

0.220

0.319

0.785

Upperbound

Failure

zone

Figure 6.--Probability density function of actuated change in the angle of attack. (a) With 5 percent increase in mean of one

random variable. (b) With 40 percent reduction in scatter of one random variable.

15



3

c-
o
o_

t-

_2
e-
(U

"O

Eo_
.Q

Ol
Q.

0
(a)

Safe

0.0 0.2 0.4 0.6

I
0.8

Safety margin

_=

O

O
"6

>
0_
r-

0_

1.0

0.8

0.6

0.4

P'-)I Actuation fiber volume ratio

Matrix modulus

Matrix tensile strength

Electric field strength (expansion)

Electric field strength (contraction)

Impact load

0.2

0.0

Figure 7.mProbability density function at safety margin equal to
zero. (a) Safety margin. (b) Sensitivity factors.

16





Form Approved
REPORT DOCUMENTATION PAGE OMBNo.0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments ragardmg this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202..4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

August 1995 Technical Memorandum

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A Probabilistic Design Method Applied to Smart Composite Structures

6. AUTHOR(S)

Michael C. Shiao and Christos C. Chamis

7. PERFORMINGORGANIZATIONNAME(S)AND ADDRESS(ES)

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORINGAGENCYNAME(S)AND ADDRESS{ES)

National Aeronautics and Space Administration

Washington, D.C. 20546-0001

WU-505--62-10

8. PERFORMING ORGANIZATION

REPORT NUMBER

E-9081

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA TM- 106715

11. SUPPLEMENTARY NOTES

Prepared for the 39th International Symposium and Exhibition sponsored by the Society for the Advancement of Materials and Process Engineering,

Anaheim, California, April 11-14, 1994. Michael C. Shiao, NYMA, Inc., 2001 Aerospace Parkway, Brook Park, Ohio 44142 (work funded by NASA

Contract NAS3-27186); Chrisms C. Chamis, NASA Lewis Research Center. Responsible person, Christos C. Chamis, organization code 5200,

(216) 433-3252.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified -Unlimited

Subject Category 39

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

A probabilistic design method is described and demonstrated using a smart composite wing. Probabilistic structural design
incorporates naturally occurring uncertainties including those in constituent (fiber]matrix) material properties, fabrication
variables, structure geometry and control-related parameters. Probabilistic sensitivity factors are computed to identify

those parameters that have a great influence on a specific structural reliability. Two performance criteria are used to
demonstrate this design methodology. The first criterion requires that the actuated angle at the wing tip be bounded by
upper and lower limits at a specified reliability. The second criterion requires that the probability of ply damage due to
random impact load be smaller than an assigned value. When the relationship between reliability improvement and the
sensitivity factors is assessed, the results show that a reduction in the scatter of the random variable with the largest
sensitivity factor (absolute value) provides the lowest failure probability. An increase in the mean of the random v__riable

with a negative sensitivity factor will reduce the failure probability. Therefore, the design can be improved by controlling
or selecting distribution parameters associated with random variables. This can be implemented during the manufacturing
process to obtain maximum benefit with minimum alterations.

14. SUBJECT TERMS

Composite; Laminate; Ply; Fiber; Matrix; Uncertainty; Sensitivity; Probabilistic;
Reliability; Smart structure; Design; Adaptive; Intraply hybrid; Control; Actuation

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

18
16o PRICE CODE

A03
20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102


